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ABSTRACT

We prove that a normalized holomorphic motion of a closed set E is

induced by a holomorphic map into the Teichmüller space of E, denoted

by T (E), if and only if it can be extended to a normalized continuous

motion of the Riemann sphere. We also prove that the extension can be

chosen to have additional properties.

1. Basic definitions and the main theorem

Definition 1.1: Let V be a connected complex manifold with a basepoint x0

and let E be a subset of the Riemann sphere Ĉ. A holomorphic motion of

E over V is a map φ: V × E → Ĉ that has the following three properties:

(a) φ(x0, z) = z for all z in E,

(b) the map φ(x, ·): E → Ĉ is injective for each x in V , and

(c) the map φ(·, z): V → Ĉ is holomorphic for each z in E.

We will sometimes write φ(x, z) as φx(z) for x in V and z in E.

We say that V is the parameter space of the holomorphic motion φ.

We will always assume that φ is a normalized holomorphic motion; i.e. 0, 1,

and ∞ belong to E and are fixed points of the map φx(·) for every x in V .
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Definition 1.2: Let V and W be connected complex manifolds with basepoints,

and f be a basepoint preserving holomorphic map of W into V . If φ is a

holomorphic motion of E over V its pullback by f is the holomorphic motion

(1.1) f∗(φ)(x, z) = φ(f(x), z) ∀(x, z) ∈ W × E

of E over W .

Throughout this paper we will assume that E is a closed subset of Ĉ and that

0,1, ∞ ∈ E. Associated to each such set E in Ĉ, there is a contractible com-

plex Banach manifold which we call the Teichmüller space of the closed set E,

denoted by T (E). This was first studied by G. Lieb in his doctoral dissertation

[14] (see A. Epstein’s dissertation [11] for a generalization). Furthermore, we

can define a holomorphic motion

ΨE : T (E) × E → Ĉ

of the closed set E over the parameter space T (E). The precise definitions of

T (E) and ΨE and some of their properties are given in Sections 2 and 3.

In [15] it was shown that T (E) is a universal parameter space for holomorphic

motions of the closed set E over a simply connected complex Banach manifold.

The space T (E) and its various properties have been the subject of several

papers in recent years; see [8], [9], [10], [15], and [16].

Definition 1.3: Let V be a path-connected Hausdorff space with a basepoint

x0. A normalized continuous motion of Ĉ over V is a continuous map

φ: V × Ĉ → Ĉ such that:

(i) φ(x0, z) = z for all z in Ĉ, and

(ii) for each x in V , the map φ(x, ·) is a homeomorphism of Ĉ onto itself that

fixes the points 0, 1, and ∞.

As in Definition 1.1, we will sometimes write φ(x, ·) as φx(·), and we will

always assume that the continuous motion φ is normalized.

An important topic in the study of holomorphic motions, is the question of

extensions. If E is a proper subset of Ẽ and φ: V × E → Ĉ, φ̃: V × Ẽ → Ĉ

are two maps, we say that φ̃ extends φ if φ̃(x, z) = φ(x, z) for all (x, z) in

V ×E. If φ: V ×E → Ĉ is a holomorphic motion, a natural question is whether

there exists a holomorphic motion φ̃: V × Ĉ → Ĉ that extends φ. For V = ∆

(the open unit disk), important results were obtained in [3] and in [21]. A

complete affirmative answer was given in Slodkowski ([19]), where it was shown

that any holomorphic motion of E over ∆ can be extended to the whole sphere.
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Slodkowski’s theorem cannot be generalised to higher dimensional parameter

spaces. This was shown by Hubbard with a two-dimensional Teichmüller space

as a parameter space (see [5]). See also [7] and Appendix 2 in [10] for other

interesting examples. The extension theorem of Bers and Royden in [3] was

generalised in [5], [15], and [20].

In this paper we study the extension of holomorphic motions to continuous

motions of Ĉ.

Theorem: Let φ: V × E → Ĉ be a holomorphic motion where V is a con-

nected complex Banach manifold with a basepoint x0. Then the following are

equivalent:

(i) There is a continuous motion φ̃: V × Ĉ → Ĉ that extends φ.

(ii) There exists a basepoint preserving holomorphic map F : V → T (E) such

that F ∗(ΨE) = φ.

Corollary: If the holomorphic motion φ can be extended to a continuous

motion φ̃, then φ̃ can be chosen so that:

(i) the map φ̃x: Ĉ → Ĉ is quasiconformal for each x in V ,

(ii) its Beltrami coefficient µx is a continuous function of x, and

(iii) for each x, the L∞ norm of µx is bounded above by a number less than

1, that depends only on the Kobayashi distance from x to x0, not on φ.

Remark 1.4: The continuous motions φ̃ with properties (i) and (ii) are precisely

the (normalized) quasiconformal motions of Ĉ defined by Sullivan and Thurston

in ([21]) as we show in a forthcoming paper ([17]), where we also report some

other properties of quasiconformal motions.

Remark 1.5: It was already known that if the complex manifold V is simply

connected, then every holomorphic motion φ of E over V can be extended to a

continuous motion φ̃: V × Ĉ → Ĉ. (See Theorem C in [15].)

Remark 1.6: Chirka introduces continuous motions in his study of extensions

of holomorphic motions; see [4].
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2. The Teichmüller space of E

2.1. Definition. Recall that a homeomorphism of Ĉ is called normalized

if it fixes the points 0, 1, and ∞.

The normalized quasiconformal self-mappings f and g of Ĉ are said to be

E-equivalent if and only if f−1 ◦ g is isotopic to the identity rel E. The

Teichmüller space T (E) is the set of all E-equivalence classes of normalized

quasiconformal self-mappings of Ĉ.

The basepoint of T (E) is the E-equivalence class of the identity map.

2.2. T (E) is a complex Banach manifold. Let M(C) be the open unit

ball of the complex Banach space L∞(C). Each µ in M(C) is the Beltrami

coefficient of a unique normalized quasiconformal homeomorphism wµ of Ĉ onto

itself. The basepoint of M(C) is the zero function.

We define the quotient map

PE : M(C) → T (E)

by setting PE(µ) equal to the E-equivalence class of wµ, written as [wµ]E .

Clearly, PE maps the basepoint of M(C) to the basepoint of T (E).

In his doctoral dissertation ([14]), G. Lieb proved that T (E) is a complex

Banach manifold such that the projection map PE from M(C) to T (E) is a

holomorphic split submersion. (This result is also proved in [10].)

2.3. The Teichmüller metric on T (E). The Teichmüller distance dM (µ, ν)

between µ and ν on M(C) is defined by

dM (µ, ν) = tanh−1
∥∥∥
µ− ν

1 − µ̄ν

∥∥∥
∞

.

The Teichmüller metric on T (E) is the quotient metric

dT (E)(s, t) = inf{dM (µ, ν) : µ and ν ∈M(C), PE(µ) = s and PE(ν) = t}

for all s and t in T (E). The Teichmüller metric on T (E) is the same as its

Kobayashi metric (see Proposition 7.30 in [10]).

2.4. Changing the basepoint. Let w be a normalized quasiconformal

self-mapping of Ĉ, and let Ê = w(E). By definition, the allowable map g

from T (Ê) to T (E) maps the Ê-equivalence class of f (written as [f ]
Ê

) to the

E-equivalence class of f ◦ w (written as [f ◦ w]E) for every normalized quasi-

conformal self-mapping f of Ĉ.
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Proposition 2.1: The allowable map g: T (Ê) → T (E) is biholomorphic. If µ

is the Beltrami coefficient of w, then g maps the basepoint of T (Ê) to the point

PE(µ) in T (E).

See Proposition 7.20 in [10] or Proposition 6.7 in [15]. The map g is also called

the geometric isomorphism induced by the quasiconformal map w. (These are

not the only biholomorphic maps between the spaces T (E). The others are

described in [9].)

2.5. Contractibility of T (E). The following fact will be crucial in this

paper.

Proposition 2.2: There is a continuous basepoint preserving map s from T (E)

to M(C) such that PE ◦ s is the identity map on T (E).

For a complete proof we refer the reader to Proposition 7.22 in [10] (or Propo-

sition 6.3 in [15]).

Since M(C) is contractible, we conclude:

Corollary 2.3: The space T (E) is contractible.

Remark 2.4: Here is an outline for the construction of s(t) for t in T (E).

Choose an extremal µ in M(C) such that PE(µ) = t. We set s(t) = µ in E. Let

Ω be a connected component of Ĉ \E. On Ω, s(t) is defined as follows. Choose

a holomorphic universal cover π: ∆ → Ω (where ∆ is the open unit disk). Lift

µ to ∆ and let µ̃ = π∗(µ) (the lift of µ). If π(ζ) = z we have

µ̃(ζ) = µ(z)
π′(ζ)

π′(ζ)
.

Let w̃: ∆ → ∆ be a quasiconformal map whose Beltrami coefficient is µ̃, and

let h: ∂∆ → ∂∆ be the boundary homeomorphism. Let w: ∆ → ∆ be the

barycentric extension of h and ν̃ be the Beltrami coefficient of w. Then, ν̃ is

the lift of a uniquely determined L∞ function ν on Ω. We set s(t) = ν in Ω.

Then ‖µ̃‖∞ = ‖µ|Ω‖∞ ≤ k := ‖µ‖∞; so,

‖s(t)|Ω‖∞ = ‖ν‖∞ ≤ c(k)

by Proposition 7 in [6], where c(k) depends only on k and 0 ≤ c(k) < 1. Since Ω

is any connected component of Ĉ\E, we conclude that ‖s(t)‖∞ ≤ max(k, c(k)).
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3. Universal holomorphic motion of E

3.1. Definition. The universal holomorphic motion ΨE of E over T (E)

is defined as follows:

ΨE(PE(µ), z) = wµ(z) for µ ∈M(C) and z ∈ E.

The definition of PE in §2.1 guarantees that ΨE is well-defined. It is a holo-

morphic motion since PE is a holomorphic split submersion and µ 7→ wµ(z) is

a holomorphic map from M(C) to Ĉ for every fixed z in Ĉ (by Theorem 11 in

[1]). This holomorphic motion is “universal” in the following sense:

Theorem 3.1: Let φ: V × E → Ĉ be a holomorphic motion. If V is simply

connected, then there exists a unique basepoint preserving holomorphic map

f : V → T (E) such that f∗(ΨE) = φ.

For a proof see Section 14 in [15].

3.2. An extension of ΨE. Let s: T (E) → M(C) be the continuous base-

point preserving section of the quotient map PE described in Remark 2.4.

Proposition 3.2: (i) The map Ψ̃E : T (E) × Ĉ → Ĉ defined by the formula

Ψ̃E(t, z) = ws(t)(z), (t, z) ∈ T (E) × Ĉ,

is a continuous motion that extends the universal holomorphic motion

ΨE: T (E) × E → Ĉ.

(ii) For t in T (E), ‖s(t)‖∞ is bounded above by a number between 0 and 1,

that depends only on dT (E)(0, t).

Proof: (i) Properties (i) and (ii) of Definition 1.3 are obviously satisfied by the

map Ψ̃E. The continuity of Ψ̃E follows from Lemma 17 of [1], which says that

wµn → wµ uniformly in the spherical metric if µn → µ in M(C). Therefore,

Ψ̃E : T (E) × Ĉ → Ĉ is a normalized continuous motion.

Finally, we have

ΨE(t, z) = ΨE(PE(s(t)), z) = ws(t)(z) = Ψ̃E(t, z)

for all (t, z) ∈ T (E) × E. Therefore, Ψ̃E extends ΨE .

(ii) Given t in T (E), choose an extremal µ in M(C) so that PE(µ) = t. Then

dT (E)(0, t) =
1

2
logK where K =

1 + k

1 − k
and k = ‖µ‖∞.

By Remark 2.4, ‖s(t)‖∞ ≤ max(c(k), k).
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4. Two lemmas

The first lemma was proved in [15], where it is Lemma 12.1. Let B be a path-

connected topological space and H(Ĉ) be the group of homeomorphisms of Ĉ

onto itself, with the topology of uniform convergence in the spherical metric.

This topology makes H(Ĉ) a topological group (see [2]). The symbol E has its

usual meaning.

Lemma 4.1: Let h: B → H(Ĉ) be a continuous map such that h(t)(e) = e for

all t in B and for all e in E. If h(t0) is isotopic to the identity rel E for some

fixed t0 in B, then h(t) is isotopic to the identity rel E for all t in B.

Lemma 4.2: Let s: T (E) → M(C) satisfy the conditions of Proposition 2.2,

and let ψ: Ĉ → Ĉ be any homeomorphism. There is at most one point t in

T (E) such that ψ is isotopic to ws(t) rel E.

Proof: If ws(t) and ws(t′) are both isotopic to ψ rel E, then they are

E-equivalent, so t = PE(s(t)) = PE(s(t′)) = t′.

5. Proof of the main theorem

Let φ: V × E → Ĉ be the given holomorphic motion, and let s: T (E) → M(C)

satisfy the conditions of Proposition 2.2.

Part 1: (ii) implies (i): Define F̃ : V → M(C) by F̃ = s ◦ F . Then

F̃ : V →M(C) is a basepoint preserving continuous map. Define φ̃: V × Ĉ → Ĉ

by

φ̃(x, z) = wF̃ (x)(z)

for all x in V and for all z in Ĉ. Clearly, φ̃(x0, z) = z for all z in Ĉ. The

continuity of φ̃ is similar to the continuity of Ψ̃E in the proof of Proposition

3.2(i). So, φ̃: V × Ĉ → Ĉ is a continuous motion.

Finally, for all z in E, we have φ(x, z) = F ∗(ΨE)(x, z) = ΨE(F (x), z) =

ΨE(PE(s(F (x))), z) = ws(F (x))(z) = wF̃ (x)(z) = φ̃(x, z). Hence φ̃ extends φ.

Part 2: (i) implies (ii): Let φ̃: V × Ĉ → Ĉ be a continuous motion that

extends φ. Let S be the set of points x in V with the following property: there

exists a neighborhood N of x and a holomorphic map h: N → T (E) such that

ws(h(x′)) is isotopic to φ̃x′ rel E for all x′ in N . We claim that S = V .

It is clear that S is an open set. To see that it contains the basepoint x0

of V , choose a simply connected neighborhood N of x0 in V , and give N the
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basepoint x0. By Theorem 3.1, there exists a basepoint preserving holomorphic

map h: N → T (E) such that h∗(ΨE) = φ on N × E. Define

H(x) = (ws(h(x)))−1 ◦ φ̃x

for each x in N . Clearly, H(x0) is the identity. Also, for all x in N , and for all

z in E,

φ̃x(z) = φ̃(x, z) = φ(x, z) = ΨE(h(x), z) = ws(h(x))(z).

Hence, for all z in E, H(x)(z) = z. Since H(x) is continuous in x, it follows

from Lemma 4.1 that H(x) is isotopic to the identity rel E. Hence, for each x

in N , ws(h(x)) is isotopic to φ̃x rel E. This shows that x0 belongs to S.

Now we shall prove that S is closed. Let y belong to the closure of S, choose

a simply connected neighborhood B of y, and give B a basepoint p in S. Let

Ê = φp(E) = {φ(p, z) : z ∈ E}

and consider

φ̂(x, φp(z)) = φ(x, z) ∀(x, z) ∈ B × E.

This is a holomorphic motion of Ê over B with basepoint p. By Theorem 3.1,

there exists a basepoint preserving holomorphic map f : B → T (Ê) such that

f∗(Ψ
Ê

) = φ̂ on B × Ê (where Ψ
Ê

: T (Ê)× Ê → Ĉ is the universal holomorphic

motion of Ê). This means

(5.1) Ψ
Ê

(f(x), φp(z)) = φ̂(x, φp(z))

for all x in B and for all z in E.

Since p ∈ S, there is a point t in T (E) such that φ̃p is isotopic to ws(t) rel E.

Thus, ws(t) maps E onto Ê; so it induces a biholomorphic map g: T (Ê) → T (E)

as in §2.4. Define ĥ: B → T (E) by ĥ = g◦f . We are going to prove that ws(ĥ(x))

is isotopic to φ̃x rel E for all x in B.

Note that f maps p to the basepoint of T (Ê) and by Proposition 2.1, g

maps f(p) to the point PE(s(t)) in T (E). Therefore, ĥ(p) = PE(s(t)) and since

ĥ(p) = PE(s(ĥ(p))), we have PE(s(t)) = PE(s(ĥ(p))). That means, ws(t) is

isotopic to ws(ĥ(p)) rel E; so φ̃p is isotopic to ws(ĥ(p)) rel E.

Let

(5.2) Ĥ(x) = (ws(ĥ(x)))−1 ◦ φ̃x

for all x in B. By the above discussion, Ĥ(p) is isotopic to the identity rel E.
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We have the standard projection map

P
Ê

: M(C) → T (Ê),

and ŝ: T (Ê) → M(C) is a continuous basepoint preserving map such that

P
Ê
◦ ŝ is the identity map on T (Ê). Since φ̃p is isotopic to ws(t) rel E, and

φ̃p(z) = φp(z) for all z in E, it follows that

(5.3) φp(z) = ws(t)(z)

for all z in E. Furthermore, for all x ∈ B, and z ∈ E, we have:

φ̃x(z) = φx(z) = φ̂x(φp(z)) = Ψ
Ê

(f(x), φp(z))

by Equation 5.1. And Ψ
Ê

(f(x), φp(z)) = wŝ(f(x))(φp(z)) = wŝ(f(x))(ws(t)(z))

by Equation 5.3. We conclude

(5.4) φ̃x(z) = wŝ(f(x))(ws(t)(z))

for all x in B, and for all z in E.

For all x in B, we have ĥ(x) = g(f(x)). Also, f(x) = P
Ê

(ŝ(f(x))) =

[wŝ(f(x))]
Ê

and by §2.4,

g: [wŝ(f(x))]
Ê
7→ [wŝ(f(x)) ◦ ws(t)]E .

Therefore,

ĥ(x) = [wŝ(f(x)) ◦ ws(t)]E .

We also have ĥ(x) = PE(s(ĥ(x))) = [ws(ĥ(x))]E for all x in B. Hence, for all x

in B, and for all z in E, we have

(5.5) wŝ(f(x))(ws(t)(z)) = ws(ĥ(x))(z).

Therefore, by Equations 5.4 and 5.5, we get φ̃x(z) = ws(ĥ(x))(z) for all x in

B and for all z in E. Hence, by Equation 5.2, Ĥ(x)(z) = z for all x in B, and

for all z in E. Since Ĥ is continuous in x, it follows from Lemma 4.1 that Ĥ(x)

is isotopic to the identity rel E for all x in B. Therefore ws(ĥ(x)) is isotopic to

φ̃x rel E for all x in B. Hence B is contained in S. In particular, y ∈ S, so S is

closed. As S is also open and nonempty, S = V .

We now define a holomorphic map F : V → T (E) as follows. Given any x in V ,

choose a neighborhood N of x and a holomorphic map h: N → T (E) such that

ws(h(x′)) is isotopic to φ̃x′ rel E for all x′ in N . Set F = h in N . Lemma 4.2
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implies that F is well-defined on all of V . It is obviously holomorphic, and

ws(F (x)) is isotopic to φ̃x rel E for all x in V .

Finally, for all x in V , and for all z in E, we have

F ∗(ΨE)(x, z) = ΨE(F (x), z) = ΨE(PE(s(F (x))), z) = ws(F (x))(z)

and φ(x, z) = φ̃(x, z) = φ̃x(z) = ws(F (x))(z) (since ws(F (x)) is isotopic to φ̃x rel

E for all x in V ). Therefore F ∗(ΨE)(x, z) = φ(x, z) for all x in V and for all z

in E. This completes the proof.

Remark 5.1: If F and G are two basepoint preserving holomorphic maps from

V into T (E) such that F ∗(ΨE) = G∗(ΨE) = φ, then it follows from Lemma 12.2

in [15] that F = G. Thus, if a basepoint preserving holomorphic map

F : V → T (E) such that F ∗(ΨE) = φ exists, then it is unique.

6. Proof of the corollary

If φ can be extended to a continuous motion of Ĉ, then by our main theo-

rem there is a basepoint preserving holomorphic map F : V → T (E) such that

F ∗(ΨE) = φ.

Using the continuous map s: T (E) → M(C) described in Remark 2.4, define

the continuous motion φ̃: V × Ĉ → Ĉ as in Part 1 of the proof of the main

theorem. We showed there that φ̃ extends φ, and it clearly satisfies conditions

(i) and (ii) of the Corollary.

For (iii), let x be in V (x 6= x0), and let F : V → T (E) be the holomorphic

map above. Since the Teichmüller metric on T (E) is the same as its Kobayashi

metric (see §2.3), we have dT (E)(0, t) ≤ ρV (x0, x) where F (x) = t and 0 denotes

the basepoint in T (E). Choose an extremal µ in M(C) such that PE(µ) = F (x).

This means that dT (E)(0, PE(µ)) = dM (0M , µ) where 0M denotes the basepoint

in M(C). We have

dT (E)(F (x0), F (x)) =
1

2
log

1 + ‖µ‖∞
1 − ‖µ‖∞

≤ ρV (x0, x)

which gives

‖µ‖∞ ≤
exp(2ρV (x0, x)) − 1

exp(2ρV (x0, x)) + 1
< 1.

Since φ̃(x, z) = wF̃ (x)(z), where F̃ = s ◦F , it follows from Part (ii) of Propo-

sition 3.2, that ‖wF̃ (x)‖∞ is bounded above by a number between 0 and 1, that

depends only on ρV (x0, x).
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7. An example

Remark 7.1: If φ: V × E → Ĉ is a holomorphic motion where V is a simply

connected complex Banach manifold, it follows from Theorem 3.1, and the main

theorem of this paper, that there always exists a normalized continuous motion

φ̃: V × Ĉ → Ĉ that extends φ. Furthermore, φ̃ has the properties (i), (ii) and

(iii) of the Corollary.

As already pointed out in Chirka ([4]), there are simple examples of holomor-

phic motions that cannot be extended to continuous motions of Ĉ. I am grateful

to Clifford Earle for the following explicit example.

Let ∆∗ := {z ∈ C : 0 < |z| < 1} and choose some basepoint a in ∆∗. Let

E := {0, 1, a,∞}.

Proposition 7.2: Set φ(t, z) = z for all (t, z) in ∆∗×{0, 1,∞} and φ(t, a) = t

for all t in ∆∗. Then φ is a holomorphic motion of E over ∆∗ that cannot be

extended to a continuous motion of Ĉ over ∆∗.

Proof: We follow Chirka’s argument. Suppose φ̃ is such an extension. For each

ζ in C \ {0}, let γζ : [0, 2π] → C \ {0} be the closed curve

γζ(θ) = φ̃(aeiθ, ζ)

for θ in [0, 2π].

Since φ̃ is a continuous motion, the winding number of γζ about zero is a

continuous function of ζ. But that winding number is zero when ζ = 1 and one

when ζ = a.
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